Troubleshooting Guide¶
Solutions for common Headroom issues.
Proxy Server Issues¶
"Proxy won't start"¶
Symptom: headroom proxy fails or hangs.
Solutions:
# 1. Check if port is already in use
lsof -i :8787
# If something is using the port, either kill it or use a different port
# 2. Try a different port
headroom proxy --port 8788
# 3. Check for missing dependencies
pip install "headroom[proxy]"
# 4. Run with debug logging
headroom proxy --log-level debug
"Connection refused" when calling proxy¶
Symptom: curl: (7) Failed to connect to localhost port 8787
Solutions:
# 1. Verify proxy is running
curl http://localhost:8787/health
# 2. Check if proxy started on a different port
ps aux | grep headroom
# 3. Check firewall settings (macOS)
sudo pfctl -s rules | grep 8787
"Proxy returns errors for some requests"¶
Symptom: Some requests work, others fail with 502/503.
Solutions:
# 1. Check proxy logs for the actual error
headroom proxy --log-level debug
# 2. Verify API key is set
echo $OPENAI_API_KEY # or ANTHROPIC_API_KEY
# 3. Test the underlying API directly
curl https://api.openai.com/v1/models -H "Authorization: Bearer $OPENAI_API_KEY"
SDK Issues¶
"No token savings"¶
Symptom: stats['session']['tokens_saved_total'] is 0.
Diagnosis:
# 1. Check mode
stats = client.get_stats()
print(f"Mode: {stats['config']['mode']}") # Should be "optimize"
# 2. Check transforms are enabled
print(f"SmartCrusher: {stats['transforms']['smart_crusher_enabled']}")
# 3. Check if content meets threshold
# SmartCrusher only compresses tool outputs > 200 tokens by default
Solutions:
# 1. Ensure mode is "optimize"
client = HeadroomClient(
original_client=OpenAI(),
provider=OpenAIProvider(),
default_mode="optimize", # NOT "audit"
)
# 2. Or override per-request
response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
headroom_mode="optimize",
)
# 3. Lower the compression threshold
config = HeadroomConfig()
config.smart_crusher.min_tokens_to_crush = 100 # Default is 200
Why It Might Be 0: - Mode is "audit" (observation only) - Messages don't contain tool outputs - Tool outputs are below the token threshold - Data isn't compressible (high uniqueness)
"Compression too aggressive"¶
Symptom: LLM responses are missing information that was in tool outputs.
Solutions:
# 1. Keep more items
config = HeadroomConfig()
config.smart_crusher.max_items_after_crush = 50 # Default: 15
# 2. Skip compression for specific tools
response = client.chat.completions.create(
model="gpt-4o",
messages=messages,
headroom_tool_profiles={
"important_tool": {"skip_compression": True},
},
)
# 3. Disable SmartCrusher entirely
config.smart_crusher.enabled = False
"High latency"¶
Symptom: Requests take longer than expected.
Diagnosis:
import time
import logging
logging.basicConfig(level=logging.DEBUG)
start = time.time()
response = client.chat.completions.create(...)
print(f"Total time: {time.time() - start:.2f}s")
# Check logs for:
# - "SmartCrusher" timing
# - "EmbeddingScorer" timing (slow if using embeddings)
Solutions:
# 1. Use BM25 instead of embeddings (faster)
config = HeadroomConfig()
config.smart_crusher.relevance.tier = "bm25" # Default may use embeddings
# 2. Increase threshold to skip small payloads
config.smart_crusher.min_tokens_to_crush = 500
# 3. Disable transforms you don't need
config.cache_aligner.enabled = False
config.rolling_window.enabled = False
"ValidationError on setup"¶
Symptom: validate_setup() returns errors.
Common Issues:
result = client.validate_setup()
print(result)
# Provider error:
# {"provider": {"ok": False, "error": "No API key"}}
# → Set OPENAI_API_KEY or pass api_key to OpenAI()
# Storage error:
# {"storage": {"ok": False, "error": "unable to open database"}}
# → Check path permissions, use :memory: for testing
# Config error:
# {"config": {"ok": False, "error": "Invalid mode"}}
# → Use "audit" or "optimize" only
Solutions:
# 1. For testing, use in-memory storage
client = HeadroomClient(
original_client=OpenAI(),
provider=OpenAIProvider(),
store_url="sqlite:///:memory:", # No file created
)
# 2. For temp directory storage
import tempfile
import os
db_path = os.path.join(tempfile.gettempdir(), "headroom.db")
client = HeadroomClient(
original_client=OpenAI(),
provider=OpenAIProvider(),
store_url=f"sqlite:///{db_path}",
)
Import/Installation Issues¶
"ModuleNotFoundError: No module named 'headroom'"¶
# 1. Check it's installed in the right environment
pip show headroom
# 2. If using virtual environment, ensure it's activated
source venv/bin/activate # or equivalent
# 3. Reinstall
pip install --upgrade headroom
"ImportError: cannot import name 'X' from 'headroom'"¶
# Check available imports
import headroom
print(dir(headroom))
# Common imports:
from headroom import (
HeadroomClient,
OpenAIProvider,
AnthropicProvider,
HeadroomConfig,
# Exceptions
HeadroomError,
ConfigurationError,
ProviderError,
)
"Missing optional dependency"¶
# For proxy server
pip install "headroom[proxy]"
# For embedding-based relevance scoring
pip install "headroom[relevance]"
# For everything
pip install "headroom[all]"
Provider-Specific Issues¶
OpenAI: "Invalid API key"¶
from openai import OpenAI
import os
# Ensure key is set
api_key = os.environ.get("OPENAI_API_KEY")
if not api_key:
raise ValueError("OPENAI_API_KEY not set")
client = HeadroomClient(
original_client=OpenAI(api_key=api_key),
provider=OpenAIProvider(),
)
Anthropic: "Authentication error"¶
from anthropic import Anthropic
import os
api_key = os.environ.get("ANTHROPIC_API_KEY")
client = HeadroomClient(
original_client=Anthropic(api_key=api_key),
provider=AnthropicProvider(),
)
"Unknown model" warnings¶
# For custom/fine-tuned models, specify context limit
client = HeadroomClient(
original_client=OpenAI(),
provider=OpenAIProvider(),
model_context_limits={
"ft:gpt-4o-2024-08-06:my-org::abc123": 128000,
"my-custom-model": 32000,
},
)
Debugging Techniques¶
Enable Full Logging¶
import logging
# See everything
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s %(name)s %(levelname)s %(message)s",
)
# Or just Headroom logs
logging.getLogger("headroom").setLevel(logging.DEBUG)
Inspect Transform Results¶
# Use simulate to see what would happen
plan = client.chat.completions.simulate(
model="gpt-4o",
messages=messages,
)
print(f"Tokens: {plan.tokens_before} -> {plan.tokens_after}")
print(f"Transforms: {plan.transforms}")
print(f"Waste signals: {plan.waste_signals}")
# See the actual optimized messages
import json
print(json.dumps(plan.messages_optimized, indent=2))
Check Storage Contents¶
from datetime import datetime, timedelta
# Get recent metrics
metrics = client.get_metrics(
start_time=datetime.utcnow() - timedelta(hours=1),
limit=10,
)
for m in metrics:
print(f"{m.timestamp}: {m.tokens_input_before} -> {m.tokens_input_after}")
print(f" Transforms: {m.transforms_applied}")
if m.error:
print(f" ERROR: {m.error}")
Manual Transform Testing¶
from headroom import SmartCrusher, Tokenizer
from headroom.config import SmartCrusherConfig
import json
# Test compression directly
config = SmartCrusherConfig()
crusher = SmartCrusher(config)
tokenizer = Tokenizer()
messages = [
{"role": "tool", "content": json.dumps({"items": list(range(100))}), "tool_call_id": "1"}
]
result = crusher.apply(messages, tokenizer)
print(f"Tokens: {result.tokens_before} -> {result.tokens_after}")
print(f"Compressed content: {result.messages[0]['content'][:200]}...")
Error Reference¶
| Exception | Meaning | Solution |
|---|---|---|
ConfigurationError |
Invalid config values | Check config parameters |
ProviderError |
Provider issue (unknown model, etc.) | Set model_context_limits |
StorageError |
Database issue | Check path/permissions |
CompressionError |
Compression failed | Rare - check data format |
TokenizationError |
Token counting failed | Check model name |
ValidationError |
Setup validation failed | Run validate_setup() |
Handling Errors¶
from headroom import (
HeadroomClient,
HeadroomError,
ConfigurationError,
StorageError,
)
try:
client = HeadroomClient(...)
response = client.chat.completions.create(...)
except ConfigurationError as e:
print(f"Config issue: {e}")
print(f"Details: {e.details}")
except StorageError as e:
print(f"Storage issue: {e}")
# Headroom continues to work, just without metrics persistence
except HeadroomError as e:
print(f"Headroom error: {e}")
Getting Help¶
- Enable debug logging and check the output
- Use simulate() to see what transforms would apply
- Check validate_setup() for configuration issues
- File an issue at https://github.com/headroom-sdk/headroom/issues
When filing an issue, include:
- Headroom version (pip show headroom)
- Python version
- Provider (OpenAI/Anthropic)
- Debug log output
- Minimal reproduction code