Skip to content

Proxy Server Documentation

The Headroom proxy server is a production-ready HTTP server that applies context optimization to all requests passing through it.

Starting the Proxy

# Basic usage
headroom proxy

# Custom port
headroom proxy --port 8080

# With all options
headroom proxy \
  --host 0.0.0.0 \
  --port 8787 \
  --log-file /var/log/headroom.jsonl \
  --budget 100.0

Command Line Options

Core Options

Option Default Description
--host 127.0.0.1 Host to bind to
--port 8787 Port to bind to
--no-optimize false Disable optimization (passthrough mode)
--no-cache false Disable semantic caching
--no-rate-limit false Disable rate limiting
--log-file None Path to JSONL log file
--budget None Daily budget limit in USD
--openai-api-url https://api.openai.com Custom OpenAI API URL endpoint

Context Management Options

Option Default Description
--no-intelligent-context false Disable IntelligentContextManager (fall back to RollingWindow)
--no-intelligent-scoring false Disable multi-factor importance scoring (use position-based)
--no-compress-first false Disable trying deeper compression before dropping messages

By default, the proxy uses IntelligentContextManager which scores messages by multiple factors (recency, semantic similarity, TOIN-learned patterns, error indicators, forward references) and drops lowest-scored messages first. This is smarter than simple age-based truncation.

CCR Integration: When messages are dropped, they're stored in CCR so the LLM can retrieve them if needed. The inserted marker includes the CCR reference. Drops are also recorded to TOIN, so the system learns which message patterns are important across all users.

# Use legacy RollingWindow (drops oldest first)
headroom proxy --no-intelligent-context

# Disable semantic scoring (faster, but less intelligent)
headroom proxy --no-intelligent-scoring

LLMLingua Options (ML Compression)

Option Default Description
--llmlingua false Enable LLMLingua-2 ML-based compression
--llmlingua-device auto Device for model: auto, cuda, cpu, mps
--llmlingua-rate 0.3 Target compression rate (0.3 = keep 30% of tokens)

Note: LLMLingua requires additional dependencies: pip install headroom-ai[llmlingua]

# Enable LLMLingua with GPU acceleration
headroom proxy --llmlingua --llmlingua-device cuda

# More aggressive compression (keep only 20%)
headroom proxy --llmlingua --llmlingua-rate 0.2

# Conservative compression for code (keep 50%)
headroom proxy --llmlingua --llmlingua-rate 0.5

API Endpoints

Health Check

curl http://localhost:8787/health

Response:

{
  "status": "healthy",
  "optimize": true,
  "stats": {
    "total_requests": 42,
    "tokens_saved": 15000,
    "savings_percent": 45.2
  }
}

Detailed Statistics

curl http://localhost:8787/stats

Prometheus Metrics

curl http://localhost:8787/metrics

LLM APIs

The proxy supports both Anthropic and OpenAI API formats:

# Anthropic format
POST /v1/messages

# OpenAI format
POST /v1/chat/completions

Using with Claude Code

# Start proxy
headroom proxy --port 8787

# In another terminal
ANTHROPIC_BASE_URL=http://localhost:8787 claude

Using with Cursor

  1. Start the proxy: headroom proxy
  2. In Cursor settings, set the base URL to http://localhost:8787

Using with OpenAI SDK

from openai import OpenAI

client = OpenAI(
    base_url="http://localhost:8787/v1",
    api_key="your-api-key",  # Still needed for upstream
)

Features

LLMLingua ML Compression (Opt-In)

When enabled, the proxy uses Microsoft's LLMLingua-2 model for ML-based token compression:

headroom proxy --llmlingua

How it works: - LLMLinguaCompressor is added to the transform pipeline (before RollingWindow) - Automatically detects content type (JSON, code, text) and adjusts compression - Stores original content in CCR for retrieval if needed

Startup feedback:

# When enabled and available:
LLMLingua: ENABLED  (device=cuda, rate=0.3)

# When installed but not enabled (helpful hint):
LLMLingua: available (enable with --llmlingua for ML compression)

# When enabled but not installed:
WARNING: LLMLingua requested but not installed. Install with: pip install headroom-ai[llmlingua]

Why opt-in? | Concern | Default Proxy | With LLMLingua | |---------|---------------|----------------| | Dependencies | ~50MB | +2GB (torch, transformers) | | Cold start | <1s | 10-30s (model load) | | Memory | ~100MB | +1GB (model in RAM) | | Overhead | <5ms | 50-200ms per request |

Enable LLMLingua when maximum compression justifies the resource cost.

Semantic Caching

The proxy caches responses for repeated queries:

  • LRU eviction with configurable max entries
  • TTL-based expiration
  • Cache key based on message content hash

Rate Limiting

Token bucket rate limiting protects against runaway costs:

  • Configurable requests per minute
  • Configurable tokens per minute
  • Per-API-key tracking

Cost Tracking

Track spending and enforce budgets:

  • Real-time cost estimation
  • Budget periods: hourly, daily, monthly
  • Automatic request rejection when over budget

Prometheus Metrics

Export metrics for monitoring:

headroom_requests_total
headroom_tokens_saved_total
headroom_cost_usd_total
headroom_latency_ms_sum

Configuration via Environment

export HEADROOM_HOST=0.0.0.0
export HEADROOM_PORT=8787
export HEADROOM_BUDGET=100.0
export OPENAI_TARGET_API_URL=https://custom.openai.endpoint.com
headroom proxy

Running in Production

For production deployments:

# Use a process manager
pip install gunicorn

# Run with gunicorn
gunicorn headroom.proxy.server:app \
  --workers 4 \
  --bind 0.0.0.0:8787 \
  --worker-class uvicorn.workers.UvicornWorker

Or with Docker:

FROM python:3.11-slim
RUN pip install headroom[proxy]
EXPOSE 8787
CMD ["headroom", "proxy", "--host", "0.0.0.0"]